小学鸡兔同笼的教案6篇

时间:2025-09-01 11:10:21 分类:教师总结

写教案直接影响到学生的学习效果与参与度,互动性强的教案环节,可以增强学生的参与感和主动性,下面是总结社小编为您分享的小学鸡兔同笼的教案6篇,感谢您的参阅。

小学鸡兔同笼的教案6篇

小学鸡兔同笼的教案篇1

第1课时 鸡兔同笼

教学内容:p116页的练习二十五的第20题。

教学目标

知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。

过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。

情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的能力,进而体会数学的价值。

教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。

教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。教具学具:多媒体

教学过程

一、情境导入

师:“鸡兔同笼”是一道有名的`中国古算题。最早出现在《孙子算经》中。许多小数数学问题都可以转化成这类问题。

师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?

生1:列表法,适合数据较小的问题。

生2:假设法,一般情况都适合,数量关系比较容易理解。

师:今天我们复习“鸡兔同笼”问题。

二、自主探究

师:摆三角形和正方形一共用了19根小棒。(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)

师:星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)

师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)

三、探究结果汇报

师:通过复习“鸡兔同笼”问题,你有哪些收获?

生1:借助列表的方法,解决简单的实际问题。

生2:我学会了化繁为简的学习方法。

生3:用“假设”法解决问题的一般性。

四、师生总结收获

师:通过本课的学习,你有哪些收获?

师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:假设、调整、检验)

板书设计

鸡兔同笼假设→调整(列表、画图)→检验

小学鸡兔同笼的教案篇2

【学习目标】

1、尝试用不同的方法解决“鸡兔同笼”问题,并体会代数方法的一般性。

2、解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。

3、体会到数学问题在日常生活中的应用。

【学习重难点】

1、重点是尝试用不同的方法解决“鸡兔同笼”问题。

2、难点是在解决问题的过程中培养逻辑推理能力。

【学习过程】

一、故事引入

在我国古代流传着很多有趣的数学问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

阅读书本p112鸡兔同笼的故事,能用你自己的话表述一下题目的意思吗?

二、探索新知

1、阅读p113例1,根据书本提示,会用列表法求出鸡、兔各几只吗?

(完成课本表格。)

2、假设笼子里都是鸡或者都是兔,脚数会发生什么变化呢?能列式解决吗?

(会用假设法解决“鸡兔同笼”问题)

3、自己动笔,尝试用方程的`方法解决鸡兔只数的问题?

(有困难的可参考书本p114)

4、用假设或者解方程的方法解决p112“鸡兔同笼”问题

(1)方程解:(2)算术解:

解:设鸡有x只,那么兔就有(35-x)只。解:假设都是鸡。

根据鸡兔共有94只脚来列方程式2×35=70(只)

2x+(35-x)×4=9494-70=24(只)

2x=4624÷(4-2)=12(只)

x=2335-12=23(只)

35-23=12(只)答:鸡有23只,兔有12只。

答:鸡有23只,兔有12只。

5、以上三种解法,哪一种更方便?

☆友情小提示:

要解决“鸡兔同笼”问题,可以采用假设法或方程解都可以。用方程解更直接。

6、阅读p114阅读资料,了解下古人是怎样解决鸡兔同笼问题的。

三、知识应用:

独立完成p115“做一做”,组长检查核对,提出质疑。

四、层级训练:

1.巩固训练:完成p116练习二十六第1--5题。

2.拓展提高:练习二十六第6、7题。及p117“思考题”

五、总结梳理

回顾本节课的学习,说一说你有哪些收获?

学习心得(a.我很棒,成功了;b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

小学鸡兔同笼的教案篇3

教学目标:

1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。

2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。

3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。

教学重点:

会用假设法和方程法解答“鸡兔同笼”问题。

教学难点:

明白用假设法解决“鸡兔同笼”问题的算理。

教学用具:

多媒体课件。

教学过程:

一、创设情境,引入新课。

引入:

同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?

这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。

为便于研究,我们先从简单的生活问题入手,请看下面问题。

学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?

?设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。

二、自主学习、小组探究

对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。

温馨提示:

①用列举法怎样解决问题?

②你能用画图的方法解答吗?

③如果把这些票都看成学生票或都看成成人票如何解答?

④回顾列方程解决问题的经验,怎样用方程解决问题?

学生自己根据提示用自己喜欢的方法解决问题。

先把自己的想法在小组内说一说,再共同协商解决。

教师巡视,要注意发现学生的不同解法,同时参与小组的指导。

三、汇报交流,评价质疑

对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。

1、列举法。

可以有目的的先展示这种方法。(多媒体展示。)

质疑:有50张票,是否有必要一一列举,你是如何列举的?

(引导学生通常先从总数的中间数列举。)

质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?

(引导学生根据数据特点确定调整方向、调整幅度。)

师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)

2、假设法

(1)假设全是成人票:

①为了便于学生理解,展示假设为成人票,学生试画的分析图。(图略)

②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。

(学生试着列算式,请两个学生到黑板上去板演。)

预设板演:

50×6=300(元)300-260=40(元)40÷(6-4)=20(张)

50-20=30(张)

③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?

预设回答:

假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。

而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。

(2)假设全是学生票:

如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)

总结方法归纳抽象出这类问题的模型。

学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价).

成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价).

3、方程法:

除了以上两种方法,还有别的计算方法了吗?

学生汇报列方程的方法。

(1)找出相等的数量关系。

(学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260

元)

(2)根据等量关系列式:

设成人票有x张,则学生票有(50-x)张。

列方程为:6x+4(50-x)=260

(解略)

4、学生比较以上几种方法解题方法。

四、抽象概括,总结提升。

让学生结合自己解决问题的经验,用自己的语言进行总结。

列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。

画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的。

假设法:适合所有的这类问题,但比较抽象,不好理解。

方程法:适用面广,便捷,容易理解。

师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。

?设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。

五、巩固应用,拓展提高

1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)

温馨提示:

a.先让学生认真读题,(同桌讨论)。

b.然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。

2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?

处理方法:

①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。

②小组内交流算法。

③全班交流。

?设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的`各种解法,培养学生的实践应用能力。

巩固练习:回应解决例题,引导学生用合适的方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)

?设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。

全课小结:

回顾总结,引发思考

本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。

师总结:

这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。

小学鸡兔同笼的教案篇4

教学目标:

1.知识与技能目标:通过学习,让学生掌握用图示法、列方程法、假设法解决"鸡兔同笼"问题,让学生体验解决问题的多样性,并能用这些方法解决生活中类似"鸡兔同笼"的问题。感受古代数学问题的趣味性和解法的巧妙性。

2.过程与方法目标:学会在学习中进行尝试.比较.分析,培养解决问题的能力,并在解决问题的过程中培养学生的合作意识和逻辑推理能力。

3.情感与价值目标.了解我国古代数学研究成果,增强明族自豪感。

教学重点:

尝试用不同的方法解决"鸡兔同笼"问题。

教学难点:

在解决问题的过程中培养学生的逻辑推理能力。

教具准备:

圆形纸片、小棒若干小黑板图片

教学过程:

一、谜语激趣,导入新课

1.出示谜语卡片。(目的是激发学生学习兴趣问题的欲望,同时引出课题)

顶上红冠戴红红眼睛白白毛

身披五彩衣长长耳朵短尾巴

能测天亮时身披一件白皮袄

呼得众人醒走起路来轻轻跳

(猜一动物)(猜一动物)

老师根据学生的回答,先后在黑板上出示鸡和兔的图片。

2.板书课题:鸡兔同笼。

3.用数学语言描述一下鸡和兔各有什么特征。(目的是为后面的教学做铺垫)

(预设:鸡和兔各有一个头,鸡有两只脚,两只翅膀,兔子有四只脚。)

二、合作讨论,探究新知

1.出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?(小黑板)(“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此我第一次出示的尝试题把原题中的数据改小了,这样有利于激起学生的学习兴趣,能充分照顾到不同层次的学生,让学生主动参与进来。)

2.从题目中你们能发现什么数学信息?(捕捉隐含信息)(目的是引导学生理解题意:鸡和兔共8只,鸡和兔共有26条腿,同时捕捉隐含信息:鸡有2条腿,兔有4条腿。)

3.独立思考:(培养学生独立解决问题的能力。)

4.小组讨论探究。(老师参与其中,启发、点拔,师生互动。)(针对六年级的学生年龄特点和心理特征,以及他们现在的知识水平,采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。在师生互动中让每个学生都动口、动手、动脑,腾出足够的时空和自由度使学生成为课堂的主人,使每个学生的学习都能有体验、有收获、有感想。目的是激发学生的探索欲望,让学生在小组讨论交流中弄清“鸡兔同笼”问题的结构特征和解题策略,亲历多样化解题的过程,初步形成解决此类问题的一般性策略。)

5.学生汇报探究的方法和结论。

预设以下几种方法:(根据时间而讲解其中的二至三种方法)(这种设计有一定的伸缩性,教师可以灵活把握。)

(1)用方程解

解:设兔有x只,那么鸡有(8-x)只。

4x+2(8-x)=26

16+2x=26

2x=26-16

x=5

8-5=3(只)

即鸡有3只,兔有5只。

引导学生口头检验

(2)形象生动,讲解假设法

①、假设全是鸡一共就有8×2=16条腿。实际有26条腿,这样笼子里就少了26-16=10条腿,为什么会少了10条腿呢?(把兔当了鸡在算。每只兔少算两条腿,那把几只兔当成了鸡算就会少算10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算)10÷2=5就是兔的只数,8-5=3(只)鸡

②、思考:假设笼子里都是兔该怎样求?

同桌口头完成。

小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)

(3)列表法。

出示图表:(小黑板)

学生反馈填表过程,说明从中发现的规律。

小学鸡兔同笼的教案篇5

一、教学目标

?知识与技能】

理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。

?过程与方法】

经历自主探索解决问题的过程,体验解决问题的策略的多样化;在解决问题的过程中,提高逻辑推理能力,增强应用意识和实践能力。

?情感态度价值观】

感受古代数学问题的趣味性。

二、教学重难点

?教学重点】

掌握运用列表法、假设法解决“鸡兔同笼”问题。

?教学难点】

理解掌握假设法,能运用假设法解决数学问题。

三、教学过程

(一)引入新课

ppt呈现课本的主题图,并提问:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?是什么意思?大家能不能算出各几何呢?

引出课题——《鸡兔同笼》

(二)探索新知

先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下

教师总结学生回答:3只兔子,5只鸡,22只脚;4只兔子,4只鸡,24只脚。均不对

追问:按顺序列表填写一下,应该是各有几只?

得出结论有3只鸡,5只兔子。

进一步追问:还有没有其他方法?

学生活动:前后四人一小组讨论。

教师总结:假设笼子里都是鸡,那么多出来的'脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。

(三)课堂练习

ppt再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”

学生活动:学生自主选择喜欢的方法进行解决,一名学生到黑板上板演,其余学生独立完成,在黑板上板演的学生在结束后充当小老师给其他同学进行讲解

(四)小结作业

提问:今天有什么收获?

教师引导学生回顾解决鸡兔同笼问题的方法。

课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。

四、板书设计

五、课后反思

小学鸡兔同笼的教案篇6

教学内容:

人教版《数学》四年级下册p103——p104页数学广角——《鸡兔同笼》。

教材分析:

“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。

3、在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。

教学重点:

1、理解掌握解决问题的不同思路和方法。

2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。

教学难点:

理解掌握假设法,能运用假设法解决数学问题。

教学具准备:

表格

教学过程:

一、导入

师生谈话导入新知

(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)

二、探究新知

1、质疑:提问:

(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?

(2)鸡和兔相比:什么比什么多?多多少?

(3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?

(4)尝试解决,交流想法;

(5)出示交换已知条件以后的题目。

(设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)

2、教学例1

(1)出示例题1。

师:请同学们读一读,和前面的题目一样吗?什么地方不一样?

请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)

(设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)

(2)学生自由猜测。

师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。

(3)验证猜想。

(4)观察发现规律。

(5)总结概括:在数学中这种方法叫列表法。(板书)。

(设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的经验。)

质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?

3、探讨假设法:

a、假设全是兔。

1师以童话故事的形式引入全是兔的情境。

2集体探究,引导交流。

b、假设全是鸡。

1师再次继续童话故事引入全是鸡的情境。

2小组独立探究交流假设全是鸡的计算方法。

3指名小组展示并叙述计算过程。

4小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)

5延伸:其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。

(设计理念:通过情境假设,让学生感知数学的趣味性,提高了学生探究新知的兴趣,也为假设法的探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)

三、练习巩固

出示练习题。

四、课后总结

(设计理念:学生通过练习一方面加强了对列表法、假设法的巩固,另一方面学生运用所学知识灵活的解决问题,增强了学生的应用意识;通过小结收获整理课堂新知,培养学生归纳总结的能力。)

板书

鸡兔同笼

1、列表法

2、假设法

《小学鸡兔同笼的教案6篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭