小数乘小数2教案精选7篇

时间:2025-08-09 17:10:12 分类:教师总结

教师在教案中设置问题环节,可以增强知识链条的思维深度,教案的清晰目标能够引导学生设定个人学习计划,提高自学能力,以下是总结社小编精心为您推荐的小数乘小数2教案精选7篇,供大家参考。

小数乘小数2教案精选7篇

小数乘小数2教案篇1

教学目标:

1、经历观察、测量、猜想等学习活动,感受、体验小数产生于生活,感受生活中处处都存在小数;

2、理解小数的意义,能说出小数各部分的名称,掌握小数的读、写方法,并正确能读写小数;

3、在合作与交流中的过程中,感受数学学习的乐趣。

教学教法:

教学方法是教学过程中师生双方为完成目标而采取的活动方式的组合。根据本课教学内容的特点和学生的思维特点,我选择了尝试法、引导发现法、等方法的优化组合。引导他们去发现问题、分析问题、解决问题、获取知识,从而达到训练思维、培养能力的目的。小数的含义是属概念教学,较为抽象、凝炼,根据学生对概念的认知,一般遵循:感知——表象——抽象概括——形成概念的这一规律。

1、从生活中了解小数,明确要用小数表示的必要性。

2、从已有的生活经验中,理解、抽象小数的意义。

3、 通过观察、测量,让学生充分感受、体验小数产生于生活,从而使学生感受生活中处处都存在小数 。

4、了解小数在生活中的普遍存在及广泛运用,体验数学在身边,感受数学学习的价值和乐趣。

教学学法:

1、学会通过观察、测量、归纳,可以发现生活中处处都存在小数 。

2、引导学生自主探究,培养他们用已有知识解决新问题的能力。

3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。

教学过程:

一、创设情景 导入新课

创设“5.1”假期情景 ,使本课内容与学生的现实生活经念相吻合

1、在假期里你买了什么物品?花了多少钱?

2、老师买了一本书,同学们猜一猜要多少元?

从同学们的回答中归纳出不能用整元数表示的这种数,要用小数表示。引入课题。

这样的设计,旨在把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知的火花,从而进入的学习状态,为主动探究新知识聚集动力。

二、明确目标 探索新知

同学们都知道小数就在我们的生活中存在,那么同学们想了解小数的什么?

我预设学生的提问(预设)

1、小数是怎么来的。(怎么产生的)

2、什么叫小数?(小数的意义)

3、小数是怎么读的,怎么写的?

根据学生提的问题,师生分析问题

1、师生小结小数的意义

(1)象“0.1、0.3、0.9”这些小数叫1位小数。(分母是10的分数,可以写成1位小数。1位小数表示十分之几。)

(2)象“0.01、0.04、0.18”这些小数叫2位小数。(分母是100的分数,可以写成2位小数。2位小数表示百分之几。)

(3)象“0.001、0.015、0.219”这些小数叫3位小数。(分母是1000的分数,可以写成3位小数。3位小数表示千分之几。)

2、学习小数的写法

三、巩固新知

1、练习“考考你”;(练一练)第1题

2、用米做单位测量同桌的`高度;

3、菜市场买菜统计表。

?把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣】

四、小结

1、了解小数的历史。(小资料)

?了解小数的历史,激发学生的爱国热情。】

2、学了小数这节课,能谈谈你知道了些什么吗?

五、作业布置

1、从生活中记录一些小数,明天同学之间相互交流;

2、完成《作业本》

布置实践性的作业,使学生把小数在实际生活中的运用结合起来,体验教学就在身边,感受数学学习的乐趣。

小数乘小数2教案篇2

一、复习

用分数表示下面的数。

1角=( )元 1分米=( )米 2角=( )元

1厘米=( )米 1分=( )元 1毫米=( )米

二、教学例1:

1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。

指名回答问题。注意学生回答问题时要完整。

橡皮的单价0.3元是3角;信封的单价0.05元是5分,练习簿的单价0.48元是4角8分或48分。

2、教学小数的读法:

你能读出下面的小数吗?鼓励学生大胆尝试。

0.05 读作: 零点零五 0.48 读作: 零点四八

引导学生总结读整数部分为0的小数的方法:

从左往右依次读出各位上的数。

3、初步感受两位小数的含义。

想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?

小组讨论交流。

汇报:0.3元是1元的十分之三。

思路: 1元=100分,1元平均分成100份,1份是1分,1分就是1元的1/100 ;0.05元是5分,是5个1/100 ,也就是1元的 5/100。

根据上面的思路,让学生说明0.48元是1元的48/100 。

引导学生看到0.05和0.48都是两位小数,都表示百分之几。

4、“试一试”

a、理解:1厘米是 1/100米, 1/100米可以写成0.01米。

b、用米为单位的分数和小数分别表示4厘米与9厘米。

学生回答并说名理由。

比较:这三个分数都是什么样的分数?(百分之几的分数)

这三个小数呢?(两位小数)

我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)

三、数形结合,建立小数的概念。

1、出示例2:把什么看作“1”?(正方形)

看着图形将1/10和1/100 写成小数。学生自主填空后回答。

提问:0.1表示什么?0.01又表示什么?

2、试一试:学生自主练习,进一步体验小数的意义。

3、思考:

观察前面出现的小数与分数的关系,你有什么发现?和小组内的同学交流一下自己的观点。

结论:分母是10、100、……的.分数可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几……

4、想一想:

1/1000写成小数是多少?29/1000 呢?你能写一写、读一读吗?

b、 进一步体会读法:0.001 读作 : 零点零零??

0.029 读作 : 零点零二九

强调:小数部分的零要一个一个的读,不能只读一个零。

我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,那么你知道四位小数表示什么吗?学生回答。

5、练一练:

学生自主填空,交流时注意让学生根据小数的意义进行说明。

四、巩固练习:

练习五的1—5题。

练习时让学生自主练习,指名回答时要培养学生完整回答并应用自己学过的知识阐明观点的习惯与能力。

注意:练习的第3题,出现了整数部分不是0的小数,读写应该不会有困难,但是在用小数的意义进行说明时,对于一部分学生可能会造成困难,虽然题目没有要求学生进行意义说明,但是在教学中还是应该有初步的渗透。

小数乘小数2教案篇3

一、设疑激趣

师:今天我们学习的内容跟哪种数有关?你从哪里发现的信息?

生:小数,从大屏幕上。

师:小数的意义就是小数表示什么?那你知道吗?

生:不知道。

师:那我们先来回顾一下我们的“小数”朋友,你在生活中遇见过小数吗?

生:遇见过。

师:在哪遇见过?

生1:在计算器上计算有余数的除法时出现了小数。

生2:去超市买东西时会遇见小数。(师跟进说标价是小数)

生3:卖菜时遇见小数,(一生补充说是称量重量时出现小数)

设计意图:让学生回顾和小数的“相遇”引出小数的生活意义,把数学和生活联系,让学生体会生活与数学的联系,以及数学的生活性,以此来激发学生的探究欲望。:

二、探究新知

1、小数的产生

师:可见小数在生活中是很有用的,那今天我们就先来研究一下它是怎样产生的。刚才同学们说在标价、计量、测量时会用到小数,还有计算时会出现小数,看是这样的吗?(大屏幕出示,测量课桌的长的图片)测量结果课桌长是多少呢?

生:(异口同声地回答)60厘米。

师:怎样用米来作单位呢?(有几人举手)它有1米吗?(没有)那不到1米可以用什么数来表示?(生小数)用哪个小数来表示呢?

生:一百分之六十。

师:一百分之六十是小数吗?(不是)那是什么数?(分数)那你说可以用分数来表示,那还可以用谁来表示呢?

生:0.60。

师:(师提示要带上单位)0.60米。这样我们就得到了一个小数0.60。体育赛事里也有小数,(出示世界飞人的100米短跑的成绩)博尔特以多少的成绩夺冠?

生:9.58秒。

师:出示一次数学检测的成绩98.5分,也是检测,再来一组口算。

出示口算:

10÷10=1÷10=

100÷10=1÷100=

1000÷10=1÷1000=

设计意图:兴趣是最活跃的心理成分,是一种带趋向性的心理特征。苏霍姆林斯基也说过:如果教师不设法使学生产生情绪高昂和智力振奋的状态就急于传授知识,不动情感的脑力劳动只会带来疲倦,没有欢欣鼓舞的心情,没有学习的兴趣,学习就会成为学生的负担。因此,在教学中,我创设了超市物品的价格、跑步成绩、身高、体重、体温等情境,让学生感到亲切,引起情感共鸣,体验身边处处有小数。同时,让学生体验测量课桌的长,使学生体会到在实际测量中有时会得不到整数值,必须用新的数来表示。进而又让学生进行口算,让学生动手操作、口算,亲身体验小数是怎样产生的,激发学生的积极性和主动性。:

生:0,赶紧改成1。

师:非常欣赏他知错就改的精神,但我更希望你能把问题完整的回答下来,语言叙述要准确,(再次完整的回答)。

师:1÷10=?(没人举手)那先来想想这道算式表示的意义是什么?

生:1里面有多少个十。

师:还可以用那句话来说?

生:把1平均分成10份,每份是几?都说是十分之一。

师:计算结果出现不是整数时,我们可以用以前分数表示,还可以用小数来表示。谁知道十分之一等于多少呢?(学生都愣了)十分之一是多少呢?用小数多少呢?(一生说是0.1)对吗?先留着,不知道,画一个问号。下边1÷100=?(0.01)用分数怎样表示呢?(一百分之一)那1÷1000=?就是把1平均分成1000分每份是多少?(一千分之一)那好我们一起来看一下(出示好几张图片)

师:刚才在进行计算和测量时,往往得不到整数的结果。这时就可以用小数来表示,这就是小数的产生,存在的生活意义。

反思:教师太过着急了,没有耐心等待孩子的思维发展,没能和上学生的心弦。原本是等孩子们经历完三道计算后再引出小数的,但是一次就出来了。所以小数的产生没能顺理成章的出现。:

2、教学小数的意义

师:能不能把刚才得到的小数读出来呢?从左往右,要学生一起读。你能不能把这几个小数分成两类呢?

0.85 9.58 38.2 0.6 39.4 98.5

生:0.85 9.58是一类,其余是一类。

师:能不能说说你的分类理由?

生:后面是两位、一位。

师:她说是后面,(一生即使补充是小数点后面)说得真好,来欣赏一下,(追问,指着0.85 9.58问)小数点后面是几位呀?(两位)那我们就把它称作两位小数,(指着38.2 0.6 39.4 98.5)小数点后面有几位?(一位)那就叫(学生根据直觉说)一位小数。那小数肯定还会有?

生:三位小数,四位小数,五位小数……

师:小数的位数是无尽的,研究小数也要从简单入手,咱们就先从研究一位小数入手。我们借助常用的一个长度单位来研究,(出示米尺图)请读出一句话。

设计意图:让学生通过观察思考及演示,层层设问,利用旧知逐步将学生引向新知。学生对小数的位数有一定的理解,渗透化难为易的数学研究思想。:

反思:本环节的分类有两种,一种是按小数的位数分类,另一种是按照整数部分是否0(是否纯小数)来分,一种是为本节的小数意义作铺垫,一种是为小数的后续研究做伏笔,但自己却把第一种分法板示后,把后者遗忘了。:

教师出示:把1米平均分成10份。

师:把1米平均分成10份,每一份是多长?

生:10厘米。

1分米。

师:1分米和10厘米相等吗?(相等)都可以,那你能不能用一个分数来表示呢?

生:一百分之一。

生:十分之一。

师:把一米平均分成了十分,那分母就应该是几?(10)十分之一米可以用哪个小数来表示?(0.1米)观察1分米,1/10米,0.1米它们都是指把一米平均分成10份,其中的一份的长度,那你说这三个数是否相等?(等于,完成板书1分米=1/10米=0.1米,擦掉问号)1分米是其中的几份呢?

师:这个数如何表示呢?(4/10米,0.4米)这两个长度一样吗?(一样)那就可以用等号连接。谁能说一下4/10米里面有多少个1/10米?(4个)

师:你能表示这个数吗?(7分米,7/10米,0.7米)那你能说说0.7里面有多少个0.1吗?(异口同声,7个)

擦掉单位发现:1/10 =0.1,那你以后看到0.1就要想到1/10,0.1就是谁了?(1/10)0.4里面有()个1/10,0.4就是分数()。0.7里面有()个1/10,0.7就是分数()。

师:你发现分数与小数的联系了吗?

分母是10的分数,可以写成一位小数。一位小数表示十分之几,它是的计数单位是十分之一,也就是0.1。

师:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。

设计意图:在后面的教学中实现知识的正向迁移,理解分数与小数之间的联系。进而理解小数的意义。:

(2)认识两位小数

师(引导学生观察米尺):把1米平均分成100份,每份是多少呢?

生:是一百分之一米。

师:还可以怎样表示呢?

生:0.01米,1厘米。(补充板书)

师:一百分之一米,它的分母是多少?(100)分母是100的分数写成了几位小数?(两位小数)你还能把几厘米表示成这样的数吗?你想表示几厘米就表示几厘米?(老师是涂色吗?)不是,是自己写一个几厘米把它用小数,分数表示。

反思:问题提出的较为模糊,所以自己不断地去补充、重复问题。就这还有孩子不知我说啥,还是自己的问题指向目标不明确造成的。:

交流自己写的:

师:你写的是多少?

生1:7厘米,是7/100米,0.07米。

师:你能猜一猜两位小数与什么样的分数有关系吗?

(指名回答并板书:1厘米=1/100米=0.01米;7厘米=7/100米=0.07米。)

生(口答):0.01里面有()个1/100,0.20里面有()个1/100,0.32里面有()个1/100,并说出用哪个分数来表示。

引导发现:两位小数表示百分之几,它的计数单位是百分之一,也就是0.01。

师:0.32里面有多少个百分之一呢?(32个)这就是小数0.32表示的意义。

(3)认识三位小数

出示:一位小数表示十分之几,它的计数单位是十分之一,可以写作 0.1。

两位小数表示百分之几,它的计数单位是百分之一,可以写作0.01。

师:刚才我们认识了一位小数、两位小数的意义和计数单位,那以此类推,你知道

三位小数表示什么?(千分之几)它的计数单位是(千分之一),可以写作(0.001)。

四位小数表示什么呢?计数单位呢?可以写作?五位小数呢?小数的位数能说完吗?……(不能)是无穷的。

师(借助米尺,使学生明确):把1米平均分成一千份,每份是多少?(1毫米)

1毫米是千分之一米,还可以写成0.001米来表示。(板书:1毫米,米,0.001米)

设计意图:数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米=1/10米=0、1米时,先让学生初步感悟十进制分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识二位小数、三位小数,从而归纳出小数的意义。后又通过观察、思考、类推出三位、四位小数的计数单位。:

(4)抽象、概括小数的意义

师:小数是什么?

补充并概括:小数其实就是分母是10、100、1000……的分数的另一种书写形式。分母是10、100、1000、……的分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫做小数。

师:0.85是几位小数?它就是哪个分数呢?它的意义是什么呢?0.85表示什么?

生:85个0.01,还可以表示把一个整体平均分成100份,有这样的85份。

师:这就是0.85这个小数表示的意义。0.1、0.01、0.001……这些是小数的计数单位,那整数的计数单位有哪些?

生:个、十、百、千、万……

师:每相邻两个计数单位之间的进率是多少?(10)接下来我们来研究小数的计数单位。

3、小数单位间的进率

师:这是一个正方形,可以用“1”来表示,(演示把它平均分成十份,其中一份涂红色问),这是怎样分的?(十分之一、平均分)怎样分?平均分成10份,涂色部分是其中的几份?(1份)可以用哪个数来表示?(十分之一)还可应用谁来表示?(0.1)1里面有多少个0.1呢?(10个)

师:(把图继续分成100份)发生了怎样的变化?平均分成了多少分份?(100份)其中的一份用哪个数来表示?(0.01、一百分之一)那0.1里有几个0.01呢?(10个)那小数计数单位之间的进率也是10。把这个正方形平均分成1000份呢?每份是多少?0.01里面有多少个0.001?那我们就接着把小数的计数单位写在整数的计数单位后面,并用小数点隔开,这样就把整数和小数整合了。

反思:这个问题的抛出有点突然,显得计数单位更加抽象了,不如换成先让学生猜测它们之间的进率,在通过正方形平均分的动手操作、验证。借助正方形的十分之一、百分之一、千分之一来揭示小数的计数单位间的进率。:

三、巩固练习

师:9. 58的9在哪一位上?(个位)表示什么?(9个一)这个5表示什么?(5个0.1)8呢?(8个0.01)

1、下面括号里能填几。

0.1米里有()个0.01米,0.01米里面有()个0.001米。

得出:相邻两个计数单位之间的进率是10。

师:现在你知道为什么要借助长度来研究小数的意义吗?(知道)因为毫米、厘米、分米、米每相邻的单位之间的进率也是10。

设计意图:借助长度单位理解,再次得出每相邻两个计数单位之间的进率是10。重点理解“相邻”二字的含义,突破难点,巩固分数与小数之间的关系,加深对小数意义、小数计数单位及单位间进率的理解,并达到学以致用。:

2、(1)用合适的数表示图中的涂色部分。

(2)用合适的数表示图中的空白部分。

3、先写出一个两位小数,再用阴影表示这个小数。(交流自己写的小数及其意义)

4、找朋友。

四、课堂总结

师:以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系?

生:每相邻的计数单位之间的进率都是十。

生:小数就是分数。

生:小数的计数单位是0.1、0.01、0.001……也可以用分数十分之一、百分之一、千分之一……来表示。

五、你知道吗

了解小数的起源、发展史。

小数乘小数2教案篇4

教学目标

1、使学生理解并掌握百分数和小数互化的方法,能正确地把分数、小数化成百分数或把百分数化成分数、小数。

2、在计算、比较,分析、探索百分数和分数、小数互化的规律的过程中,发展学生的抽象概括能力。

3、通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。

教学重难点

教学重点:掌握百分数和分数、小数互化的方法。

教学难点:正确、熟练地进行百分数和分数、小数的互化。

教学过程

一、复习。

同学们什么叫百分数?指生回答。

1、填空

男生人数占全班人数的51%,表示把()看作100份,()占它的51%,女生人数占全班人数的()%。

2、把下面的小数化成分数,并说一说是怎样化的?

0.451、20.367

3、把下面的分数化成小数,说一说是怎样化的?

1/2 2/5 4/10 2/100

4、写出下面各百分数。

百分之十六百分之七十二点五百分之一百八十百分之五百

5、把下面各数扩大100倍是多少?小数点是怎样移动的?如果把它们缩小100倍是多少?小数点是怎样移动的?

2、55 0.48 1、25 10.3

二、新授。

1、教学例1、

(1)出示例1:把0.25、1、4、0.123化成百分数。

(2)引导学生思考:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。

独立完成,指生板演。

0.25=25/100 =25%

1、4=14/10=140/100=140%

0.123=123/1000=12、3/100=12、3%

(3)指黑板的算式:请大家观察一下,你有什么发现?声讨论。指生说发现。

小结:

如果不看先化成分数的这个过程,小数可以怎样直接化成百分数的?

(引导学生归纳出小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。)

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

(4)说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。

(5)练习:把下面的小数化成百分数。

0.07= 0.125=

2、1= 6.6=

4.076= 0.108=

2、教学例2

(1)出示例2:

把下列百分数化成小数。

27% 135%

(2)引导学生思考:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。

(3)启发学生口述每题的转化过程,

板书:

27%=27/100=27÷100=0.27

135%=135/100=135÷100=1、35

(4)引导学生观察、归纳,百分数怎样很快地直接化成小数?

(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)

(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。

(6)完成第80页“做一做”的第(2)题,(小黑板出示)

3、小结:引导学生进一步综合归纳百分数和小数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

4、教学例3

出示例3:

青阳小学六年级一班的体育委员

在调查了全班同学中会游泳和会

溜冰的人数后,得到如下结果。

你会用百分数表示出上面的分数吗?

(1)学生通过小组自学讨论,找出将分数化成百分数的方法。

(2)小组汇报,并板书。

(3)根据学生回答,

板书:3/5 =3 ÷ 5=0.6= 60% 3/5=60/100=60%

2/7=2÷7=0.2857=28.57%

把1/6化成百分数。

(分子除以分母,除不尽时,保留三位小数,也就是百分号前保留一位小数)

5。例4:把下列百分数化成分数。

50% 45% 67% 37.5%

(1)学生通过小组自学讨论,找出将百分数化成分数的方法。

(2)引导学生:百分数是分数的一部分,可以写成分数形式。请大家运用过去所学过的知识,试着把上面几个分数改写成百分数。

(3)根据学生回答,

板书:50% =50/100=1/2 45% 45/100=9/20

67%=67/100 37.5%=37.5/100=375/1000=3/8

(4)想一想:2、5%怎样化成分数?(如果百分数的分子是小数的,可以根据分数的基本性质,把分子、分母同时扩大相同的倍数,使分子变成整数后,再约分。)

(5)在○里填上合适的符号。

三、巩固练习

1、排列下列各数(从大到小)。

2、填空。

3、判断:

(1)0.6%=0.6()

(2)30的后面添上“%”,得到的数比原数扩大100倍。()

(3)15.5%扩大10倍是155。()

(4)把小数化成百分数只要把小数点向右移动两位,同时在后面添上百分号。()

4、思考:拿出一张长方形或正方形的'纸,把它对折三次,然后把其中一份用分数表示出来是(),用百分数表示出来是(),用小数表示出来是()。

()

牛的头数比羊的头数多25%,羊

的头数比牛少百分之几?

苹果重量的5/8是梨的重量的4/5

(1)苹果的重量是梨的()%

(2)梨的重量是苹果的()%

(3)梨比苹果轻()%

(4)苹果比梨重()%

100增加10%后又减

少10%是()。

一个书包的售价,今年比去年降低了25%,去年又比前年降低了20%,今年的售价比前年降低了百分之几?

四、布置作业

练习十九第5、6、8题。

小数乘小数2教案篇5

教学内容

苏教版第八册第117-118页例1-例4,“练一练”,练习二十四1-6题。

教学目标

1、理解并掌握小数的性质;

2、能运用小数的性质进行小数的化简和改写;

3、培养学生对所学知识的归纳概括,分析综合及灵活运用的能力。

教学重点

通过探索,发现小数的性质,运用小数的性质解决相关问题。

教学难点

在小数部分什么位置添“0”去“0”,小数的大小不变,以及“变”与“不变”的辨证统一关系。

教学设想

通过直观、推理让学生充分感知,然后经过比较归纳,最后概括小数的性质,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。

教学过程

一、导入新课

在商店里,经常把商品的标价写成这样的小数:手套每双2.50元,毛巾每条3.00元。这里的2.50元、3.00元分别是多少钱?(2.50元是2元5角,3.00元是3元)为什么能这样写呢?这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。

二、讲授新课

1、研究小数的性质

(1)(板书“1”)师:在“1”的末尾依次添上1个“0”、2个“0”,数的大小变化了吗?怎么变?你能不能在括号里填上合适的单位名称,使下面的等式成立

1( )=10( )=100( )

得出:1元=10角=100分

1米=10分米=100厘米

1分米=10厘米=100毫米

出示米尺,1分米是1/10米,可写成怎样的小数?(0.1米);10厘米是10个1/100米,可写成怎样的小数?(0.10米),100毫米是100个1/1000米可写成怎样的小数?(0.100米)

板书:因为1分米=10厘米=100毫米

所以0.1米=0.10米=0.100米

师:0.1、0.10、0.100是否相等?为什么?

(板书:0.1=0.10=0.100)

a、从左往右看,是什么情况?(小数的末尾添上“0”,小数大小不变)

b、从右往左看,是什么情况?(小数的末尾去掉“0”,小数大小不变)

c、由此,你发现了什么规律?(小数的末尾添上“0”或去掉“0”,小数大小不变)

(2)出示:0.4元、0.5、0.05、0.40元4.0元。师:这些数中有大小相等的小数吗?说出理由。(学生交流,教师适时适当地引导)

(3)让学生在两张同样大小的正方形纸上(其中一张均分为100格,一张均分为10格)表示出0.40、0.4,比较其大小,说明40个1/100就是4个1/10,

0.40=0.4

(4)师:如果在它们的末尾添上两个“0”呢,三个“0”呢?相等吗?为什么?

(5)0.5添上“0”成0.05,大小有没有变化?为什么?

(6)揭示小数的性质。

2、小数性质的`应用

师:根据这个性质,遇到小数末尾有“0”的时候,一般地可以去掉末尾的“0”,把小数化简。

(1)化简小数

出示例3:把0.60和203.0500化简。

提问:这样做的根据是什么?弄清题意后,学生回答,教师板书:0.60=0.6;

203.0500=203.05。

口答:课本“练一练”第1题。

(2)把整数或小数改写成指定数位的小数

师:有时根据需要,可以在小数的末尾添上“0”;还可以在整数的个位右下角点上小数点,再添上“0”,把整数写成小数的形式。

如:2.5元=2.50元3元=3.00元

(3)出示例4:不改变数的大小,把0.4、3.16、10改写成小数部分是三位的小数。

0.4=0.400 3.16=3.160 10=10.000

练习:口答“练一练”第2题。

讨论小结:改写小数时一定要注意下面三点:

a、不改变原数的大小;

b、只能在小数的末尾添上“0”;

c、把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添“0”。(想一想为什么)

三、巩固练习

练习二十四

第1题:下面的数,哪些“0”可以去掉,哪些“0”不能去掉?指名同桌对口令,其余学生当小评委。

第2题:下面的数如果末尾添“0”哪些数的大小不变,哪些数的大小变化?小组讨论,提问订正,找规律(小数的末尾添“0”大小不变,整数的末尾添“0”大小变了)。

第3题:把相等的数用线连起来,先在书上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。

第4题:化简下面小数,采取抢答来完成。

第5题:先填书上再口答订正。

第6题:用元作单位,把下面的钱数改写成小数部分是两位的小数。2人板演,其余学生齐练,评价鼓励。

小数乘小数2教案篇6

课题:生活中的小数

内容:小数的意义

课时:2

第1课时

教学目标:

1、结合具体情境,体会生活中存在着大量的小数。

2、通过实际操作,体会小数与十进制分数的关系,了解小数的意义,知道小数部分各数位名称的意义,会正确读写小数。

基本教学过程:

一、生活中的小数

(事先布置学生找一找生活中的小数,除了某些商品的标价用到小数外,找一找还有哪些地方用到小数。)

说说看,和同学们交流一下。

书上也有一些同学们经常接触的小数,看一看,说一说。

二、小数的意义

1、一盒火柴的价格是0.1元,也就是多少钱?一本本子的价格是3角,也就是多少元?

2、一个盒子的宽是0.1米,谁知道这也就是多长?猜一猜。

为什么?你是怎样想的?为什么不猜“1厘米”?

这个盒子的长是3分米,想一想,也就是多少米?

3、出示一条线段,如果这条线段的长是“1”,请你想办法得到0.1,标出来。你是怎么做的?好象还可以用分数表示。你能标出0.4吗?

4、你能解释为什么1分米可以表示成0.1米,3角可以表示成0.3元?

5、1分也就是多少元?0.02米,也就是多长?猜一猜。能说一说想法吗?出示一个正方形,这个正方形是1,请你表示0.01可以吗?小组讨论一下,你打算怎么样表示?为什么?是受什么启发吗?

6、板书:0.1=1/10 0.3=3/10 你发现了什么?

0.01=1/100 0.04=4/100

教学反思:学生在联系生活实际认识小数的基础上,进一步理解小数的意义。教材中采用树形结合的形式把小数和十进分数联系起来,认识小数的意义。但学生在做作业时,4.8中的4在()位上,表示()个();8在()上,表示()个()。有个别学生出错,还要进一步加强练习。

三、运用拓展

1、说一说

你觉得小数和什么数联系特别紧密?你还能再说出这样的几个等式吗?你觉得小数是什么样的数?

2、一个正方形是1,平均分成100份,23份是它的几分之几?可以用小数表示吗?20份?

3、0.03米就是多长?为什么?0.12米呢?

4、这个正方形表示1,如果要表示0.001呢?0.013、0.216?写几个上面那样的等式。

5、0.001米也就是多长?为什么?5毫米也就是多少米?30毫米?

四、练习提高

1、第5页第1题。

2、第5页第2、3题。

五、总结。

第2课时

教学目标:

1、结合具体情境,体会生活中存在着大量的小数。

2、通过实际操作,体会小数与十进制分数的关系,了解小数的意义,知道小数部分各数位名称的意义,会正确读写小数。

基本教学过程:

一、复习

1、(1)一个为1的正方形,怎么样表示0.1?

(2)0.1元是怎么回事?

(3)0.1米呢?1里有多少个0.1?1里有多少个0.01?

2、(1)把“1”平均分成10份,3份是多少?

(2)把“1”平均分成100份,3份是多少?12份是多少?

(3)把“1”平均分成100份,3份是多少?12份是多少?125份是多少?

教学反思:个别学生对十分位、百分位、千分位上的数表示多少,掌握得不是太好,还有待于进一步提高。小数部分的读法和整数部分的读法混淆,还要加强练习。

(4)6个0.1是多少?6个0.01?13个0.01?18个0.001?

二、探索小数的数位

1、出示:珠穆朗玛峰的高度很难测量准确,现在还准备重新测量,到目前,一般都沿用1975年我国测量的数字——8848.13米。我们来看这个数,想一想,为什么要用小数?

2、板书:8848.13

3、从左边看,第一个8表示多少?依次。边说边板书数位和计数单位。

4、“1”表示多少?“3”呢?那数位应该叫什么?计数单位?

5、练习。第4页写一写、读一读、说一说。

6、第5页第4题。

三、总结。

小数乘小数2教案篇7

教学内容:

教科书第16页例1和 “做一做”,练习三的第1~2题.

教学目的:

1.掌握比较容易的除数是整数的小数除法的计算方法,会用这种方法计算相应的小数除法.

2.培养学生的类推能力、发散思维能力、分析能力和抽象概括能力.

教具准备:

视频展示台

教学过程:

一、复习准备

1. 计算下面各题。

115÷5=( )

23×5=( )

115÷23=( )

2.计算下面各题并说一说整数除法的计算方法.

2145÷15=

416÷32=

1380÷15=

二、导入新课:

情景图引入新课:同学们你们喜欢锻炼吗?经常锻炼对我们的身体有益,请看王鹏就坚持每天晨跑,请你根据图上信息提出一个数学问题?出示例1:王鹏坚持晨练。他计划4周跑步22.4千米,平均每周应跑多少千米?教师:求平均每周应跑多少千米,怎样列式?(22.4÷4)板书课题:“小数除以整数”。

三.教学新课:

教师:想一想,被除数是小数该怎么除呢?小组讨论。分组交流讨论情况:

(1)生:22.4千米=22400米 22400÷4=5600米 5600米=5.6千米

(2) 还可以列竖式计算。

教师:请同学们试着用竖式计算。计算完后,交流自己计算的.方法。

教师:请学生将自己计算的竖式在视频展示台上展示出来,具体说说你是怎样算的?

小数点位置与被除数小数点的位置有什么关系?

引导学生理解后回答“因为在除法算式里,除到被除数的哪一位,商就写在哪一位上面,也就是说,被除数和商的相同数位是对齐了的,只有把小数点对齐了,相同数位才对齐了,所以商的小数点要对着被除数的小数点”.

教师:同学们赞同这种说法吗?(赞同)老师也赞同他的分析.

教师:大家会用这种方法计算吗?(会)请同学们用这种方法算一算.

四、巩固练习

完成“做一做”:25.2÷6 34.5÷15

五、课堂小结(略)

六、课堂作业:练习三的第1、2题

课后反思:

《小数乘小数2教案精选7篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭